Chapter 1: Integers, Class 6

CLASS NOTES

Properties of Multiplication of Integers

Closure under Multiplication

Integers are closed under multiplication because the product of two integers is an integer.

> For all integers a and b, $a \times b$ is an integer

Example: Consider the integers -5 and 5
$(-5) \times 5=-25$, is an integer.

Commutativity of Multiplication

Multiplication is commutative for integers.

For any two integers a and b,

$$
a \times b=b \times a
$$

Example: Consider the integers 5 and -2

$$
\begin{aligned}
& 5 \times(-2)=-10 \text { and }(-2) \times 5=-10 \\
\therefore & 5 \times(-2)=(-2) \times 5
\end{aligned}
$$

Multiplication by zero

Product of an integer and zero is zero.

For any integer a, $a \times 0=0 \times a=0$

Example: Let $\mathrm{a}=5$

$$
5 \times 0=0
$$

Multiplicative identity

1 is the multiplicative identity for integers.

$$
\begin{aligned}
& \text { For any integer } a, \\
& a \times 1=1 \times a=a
\end{aligned}
$$

Example: Let $\mathrm{a}=-4$

$$
-4 \times 1=1 \times-4=-4
$$

Associativity for Multiplication

Product of three integers does not depend upon the grouping of integers and this is called the associative property for multiplication of integers.

For any three integers a, b and c ,

$$
(a \times b) \times c=a \times(b \times c)
$$

Example: Let $\mathrm{a}=5, \mathrm{~b}=2$ and $\mathrm{c}=-3$

$$
\begin{aligned}
& (a \times b) \times c=(5 \times 2) \times(-3)=10 \times-3=-30 \\
& a \times(b \times c)=5 \times(2 \times-3)=5 \times-6=-30 \\
\therefore & (a \times b) \times c=a \times(b \times c)
\end{aligned}
$$

Distributive property

Distributivity of multiplication over addition

For any three integers \mathbf{a}, b and c , $a \times(b+c)=(a \times b)+(a \times c)$

Example: Let $\mathrm{a}=3, \mathrm{~b}=-2$ and $\mathrm{c}=4$

$$
\begin{aligned}
& a \times(b+c)=3 \times(-2+4)=3 \times 2=6 \\
& (a \times b)+(a \times c)=(3 \times-2)+(3 \times 4)=-6+12=6 \\
& \therefore \\
& \therefore \times(b+c)=(a \times b)+(a \times c)
\end{aligned}
$$

Distributivity of multiplication over subtraction

For any three integers \mathbf{a}, b and c , $a \times(b-c)=(a \times b)-(a \times c)$

Example: Let $\mathrm{a}=3, \mathrm{~b}=-2$ and $\mathrm{c}=4$

$$
\begin{aligned}
& a \times(b-c)=3 \times(-2-4)=3 \times-6=18 \\
& (a \times b)-(a \times c)=(3 \times-2)-(3 \times 4)=-6-12=-18 \\
& \therefore a \times(b-c)=(a \times b)-(a \times c)
\end{aligned}
$$

