CLASS NOTES

Properties of Addition and Subtraction of Integers

Closure under Addition

Integers are closed under addition since, addition of two integers gives an integer.

For any two integers a and b, a + b is an integer.

Example: (-10) + 3 = -7, is an integer

Closure under Subtraction

Integers are closed under subtraction.

For any two integers a and b, a - b is an integer.

Example: (-10) - 3 = -13, is an integer

Commutative Property

Addition is commutative for integers.

Example: Consider the integers 5 and (-3)

$$5 + (-3) = 2$$
 and $(-3) + 5 = 2$

For any two integers a and b, a + b = b + a.

Chapter 1: Integers, Class 3

i.e.,
$$5 + (-3) = (-3) + 5$$

Subtraction is not commutative for integers.

For any two integers a and b, a - b ≠ b - a.

Example: Consider the integers 5 and (-3)

Associative Property

For any integers a, b and c,

$$a + (b + c) = (a + b) + c$$

Example: Consider the integers -3, 5 and -4

$$(-3) + [5 + (-4)] = (-3) + 1 = -2$$

$$[(-3) + 5] + (-4) = 2 + (-4) = -2$$

$$\therefore$$
 (-3) + [5 + (-4)] = [(-3) + 5] + (-4)

Additive Identity

For any integer
$$a$$
, $a + 0 = a = 0 + a$

Chapter 1: Integers, Class 3

Example: Consider the integer (-5)

$$(-5) + 0 = -5 = 0 + (-5)$$

Additive Inverse

For any integer a, a + (-a) = 0

A Jakar Do Kanjirappi

Example: Consider the integer (-5)

$$5 + (-5) = 0$$

The additive inverse of 5 is -5.