

CLASS NOTES

Properties of Division of Integers

> Closure property

Integers are not closed under division.

For any two integers a and b, a ÷ b is not always an integer

Example: Let
$$a = 8$$
 and $b = 2$ then $8 \div 2 = 4$; an integer
Let $a = 2$ and $b = 8$ then $2 \div 8 = \frac{1}{4}$; not an integer

> Commutative property

Division is not commutative for integers.

For any two integers a and b,
$$a \div b \neq b \div a$$

Example: Let
$$a = 6$$
 and $b = 3$
 $a \div b = 6 \div 3 = 2$
 $b \div a = 3 \div 6 = \frac{1}{2}$
 $\therefore a \div b \neq b \div a$

> Associative property

Division is not associative for integers.

Example:

■ Let
$$a = 8$$
, $b = 2$ and $c = 1$
 $(a \div b) \div c = (8 \div 2) \div 1 = 4 \div 1 = 4$
 $a \div (b \div c) = 8 \div (2 \div 1) = 8 \div 2 = 4$
 $\therefore (a \div b) \div c = a \div (b \div c)$; if $c = 1$
■ Let $a = 8$, $b = 2$ and $c = 4$
 $(a \div b) \div c = (8 \div 2) \div 4 = 4 \div 4 = 1$
 $a \div (b \div c) = 8 \div (2 \div 4) = 8 \div \frac{1}{2} = 16$

➤ An integer divided by zero is not defined.

 \therefore (a ÷ b) ÷ c \neq a ÷ (b ÷ c); if c \neq 1

For any integer a, a ÷ 0 = Not defined

Example: $5 \div 0 = \text{Not defined}$

> Zero divided an integer other than zero is equal to zero.

For any integer a,
$$0 \div a = 0$$
 for $a \ne 0$

Example: $0 \div 8 = 0$

> Any integer divided by 1 gives the same integer.

Chapter 1: Integers, Class 10

For any integer a, a ÷ 1 = a

Example: $5 \div 1 = 5$

