Chapter 4: Practical Geometry, Class 3

CLASS NOTES-ANSWERS

EXERCISE 4.1

1. Construct the following quadrilaterals.
(i) Quadrilateral ABCD.
(ii) Quadrilateral JUMP
$A B=4.5 \mathrm{~cm}$
$\mathrm{JU}=3.5 \mathrm{~cm}$
$B C=5.5 \mathrm{~cm}$
$\mathrm{UM}=4 \mathrm{~cm}$
$C D=4 \mathrm{~cm}$
$\mathrm{MP}=5 \mathrm{~cm}$
$A D=6 \mathrm{~cm}$
PJ $=4.5 \mathrm{~cm}$
$A C=7 \mathrm{~cm}$
$\mathrm{PU}=6.5 \mathrm{~cm}$
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}$
$R E=4.5 \mathrm{~cm}$
$\mathrm{EO}=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$B E=4.5 \mathrm{~cm}$
$E T=6 \mathrm{~cm}$

Answer:

(i) Rough Sketch:

Steps of Construction:

- Construct $\triangle A B C$ by using the measurements.
- Vertex D is 6 cm away from vertex A. Therefore, while taking A as the centre, draw an arc of radius 6 cm .

Mathematics

Chapter 4: Practical Geometry, Class 3

- Taking C as the centre, draw an arc of radius 4 cm , cutting the previous arc at point D. Joint D to A and C.
- $A B C D$ is the required quadrilateral.

(ii) Rough Sketch:

Steps of construction:

- Construct Δ JUP by using the given measurements.
- Vertex M is 5 cm away from vertex P and 4 cm away from vertex U. Taking P and U as centres, draw arcs of radii 5 cm and 4 cm , respectively. Let the point of intersection be M.
- Join M to P and U.
- JUMP is the required quadrilateral.

Mathematics

Chapter 4: Practical Geometry, Class 3

(iii) Opposite sides of a parallelogram are equal in length, and also, these are parallel to each other.
i.e., $M E=O R, M O=E R$

Rough sketch:

Steps of construction:

- Construct Δ EOR by using the given measurements
- Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E. Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius, respectively. These will intersect each other at point M.
- Join M to O and E .
- MORE is the required parallelogram.

Mathematics

Chapter 4: Practical Geometry, Class 3

(iv) All sides of a rhombus are of the same measure.

Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}=\mathrm{TB}$
Rough sketch:

Steps of construction:

- Construct \triangle BET by using the given measurements.
- Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will intersect each other at point S.
- Join S to E and T.
- BEST is the required rhombus.

Mathematics
Chapter 4: Practical Geometry, Class 3

