Chapter 3: Understanding Quadrilaterals, Class 6

CLASS NOTES-ANSWERS

EXERCISE 3.2

1. Find x in the following figures.

(a)

(b)

Answer:

(a) Sum of the measures of the external angles is 360°

$$
\begin{aligned}
& 125^{\circ}+125^{\circ}+x^{\circ}=360^{\circ} \\
& 250^{\circ}+x=360^{\circ} \\
& x=360-250 \\
& x=110^{\circ}
\end{aligned}
$$

(b) Sum of the measures of the external angles is 360°

$$
\begin{aligned}
& 60^{\circ}+90^{\circ}+70^{\circ}+x+y=360^{\circ} \\
& 60^{\circ}+90^{\circ}+70^{\circ}+x+90^{\circ}=360^{\circ} \\
& 310^{\circ}+x=360^{\circ} \\
& x=50^{\circ}
\end{aligned}
$$

2. Find the measure of each exterior angle of a regular polygon of
(i) 9 sides
(ii) 15 sides

Answer: Each exterior angle $=\frac{\text { Sum of Exterior angles }}{\text { Number of sides }}$
Total measure of all exterior angles $=360^{\circ}$

Mathematics

Chapter 3: Understanding Quadrilaterals, Class 6
(i) 9 sides

Each exterior angle $=\frac{360}{9}=40^{\circ}$
(ii) 15 sides

Each exterior angle $=\frac{360}{15}=24^{\circ}$
3. How many sides does a regular polygon have if the measure of an exterior angle is $24^{\circ} ?$

Answer: Number of sides $=\frac{\text { Sum of Exterior angles }}{\text { Each exterior angle }}$
Total measure of all the exterior angles of the regular polygon $=360^{\circ}$
Measure of each exterior angle $=24^{\circ}$
Number of sides $=\frac{360}{24}=15$
Regular polygon has 15 sides.
4. How many sides does a regular polygon have if each of its interior angles is 165° ?

Answer:

Measure of each interior angle $=165^{\circ}$
Measure of each exterior angle $=180^{\circ}-165^{\circ}=15^{\circ}$ (linear pair)
Number of sides $=\frac{360}{15}=24$
Hence, the regular polygon has 24 sides.
5. (a) Is it possible to have a regular polygon with measure of each exterior angle as 22° ?
(b) Can it be an interior angle of a regular polygon? Why?

Answer:

Mathematics

Chapter 3: Understanding Quadrilaterals, Class 6
(a) Total measure of all exterior angles $=360^{\circ}$

Measure of each exterior angle $=22^{\circ}$
Therefore, the number of sides $=\frac{\text { Sum of Exterior angles }}{\text { Each exterior angle }}$

$$
\begin{aligned}
& =\frac{360}{22} \\
& =16.36
\end{aligned}
$$

We cannot have regular polygon with each exterior angle $=22^{\circ}$ as the number of sides is not a whole number. [22 is not a perfect divisor of 360°]
(b) Measure of each interior angle $=22^{\circ}$

Measure of each exterior angle $=180^{\circ}-22^{\circ}=158^{\circ}$
Therefore, the number of sides $=\frac{\text { Sum of Exterior angles }}{\text { Each exterior angle }}$
$=\frac{360}{158}$
$=2.27$
We cannot have regular polygon with each interior angle as 22° because the number of sides is not a whole number. [22 is not a perfect divisor of 360°]
6. (a) What is the minimum interior angle possible for a regular polygon? Why?
(b) What is the maximum exterior angle possible for a regular polygon?

Answer:

(a) Consider a regular polygon having the least number of sides (i.e., an equilateral triangle).

Sum of all the angles of a triangle $=180^{\circ}$
$x+x+x=180^{\circ}$

Chapter 3: Understanding Quadrilaterals, Class 6

$$
\begin{aligned}
& 3 x=180^{\circ} \\
& x=60^{\circ}
\end{aligned}
$$

Thus, minimum interior angle possible for a regular polygon $=60^{\circ}$
(b) The exterior angle and an interior angle will always form a linear pair. Thus, exterior angle will be maximum when interior angle is minimum. Exterior angle $=180^{\circ}-60^{\circ}=120^{\circ}$

Therefore, maximum exterior angle possible for a regular polygon is 120°.

Equilateral triangle is a regular polygon having maximum exterior angle because it consists of least number of sides.

