Chapter 3: Understanding Quadrilaterals, Class 6

CLASS NOTES-ANSWERS

EXERCISE 3.2

1. Find x in the following figures.

Answer:

(a) Sum of the measures of the external angles is 360°

 $125^{\circ}+125^{\circ}+x^{\circ}=360^{\circ}$ $250^{\circ} + x = 360^{\circ}$

- x = 360 250
- x = 110°
- , . . . (b) Sum of the measures of the external angles is 360°

 $60^{\circ} + 90^{\circ} + 70^{\circ} + x + y = 360^{\circ}$ $60^{\circ} + 90^{\circ} + 70^{\circ} + x + 90^{\circ} = 360^{\circ}$ $310^{\circ} + x = 360^{\circ}$ x = 50°

- 2. Find the measure of each exterior angle of a regular polygon of
 - (i) 9 sides (ii) 15 sides

Answer: Each exterior angle = $\frac{\text{Sum of Exterior angles}}{\text{Number of sides}}$

Total measure of all exterior angles $= 360^{\circ}$

Chapter 3: Understanding Quadrilaterals, Class 6

(i) 9 sides

Each exterior angle = $\frac{360}{9}$ = 40°

(ii) 15 sides

Each exterior angle = $\frac{360}{15}$ = 24°

3. How many sides does a regular polygon have if the measure of an exterior angle

is 24°?

Answer: Number of sides = $\frac{Sum of Exterior angles}{Each exterior angle}$

Total measure of all the exterior angles of the regular polygon = 360°

Measure of each exterior angle = 24°

Number of sides = $\frac{360}{24}$ = 15

Regular polygon has 15 sides.

4. How many sides does a regular polygon have if each of its interior angles is 165°? Kanjirapp

Answer:

Measure of each interior angle = 165°

Measure of each exterior angle = $180^{\circ} - 165^{\circ} = 15^{\circ}$ (linear pair)

Number of sides = $\frac{360}{15}$ = 24

Hence, the regular polygon has 24 sides.

- 5. (a) Is it possible to have a regular polygon with measure of each exterior angle as 22°?
 - (b) Can it be an interior angle of a regular polygon? Why?

Answer:

Chapter 3: Understanding Quadrilaterals, Class 6

(a) Total measure of all exterior angles = 360°

Measure of each exterior angle = 22°

Therefore, the number of sides = $\frac{\text{Sum of Exterior angles}}{\text{Each exterior angle}}$

$$=\frac{360}{22}$$

=16.36

We cannot have regular polygon with each exterior angle = 22° as the number of sides is not a whole number. [22 is not a perfect divisor of 360°]

(b) Measure of each interior angle = 22° Measure of each exterior angle = $180^{\circ} - 22^{\circ} = 158^{\circ}$ Therefore, the number of sides = $\frac{\text{Sum of Exterior angles}}{\text{Each exterior angle}}$ = $\frac{360}{15^{\circ}}$

We cannot have regular polygon with each interior angle as 22° because the number of sides is not a whole number. [22 is not a perfect divisor of 360°]

= 2.27

- 6. (a) What is the minimum interior angle possible for a regular polygon? Why?
 - (b) What is the maximum exterior angle possible for a regular polygon?

Answer:

(a) Consider a regular polygon having the least number of sides (i.e., an equilateral triangle).

Sum of all the angles of a triangle = 180°

 $x + x + x = 180^{\circ}$

3x = 180°

x = 60°

Thus, minimum interior angle possible for a regular polygon = 60°

(b) The exterior angle and an interior angle will always form a linear pair.

Thus, exterior angle will be maximum when interior angle is minimum.

Exterior angle = $180^\circ - 60^\circ = 120^\circ$

Therefore, maximum exterior angle possible for a regular polygon is 120°.

Equilateral triangle is a regular polygon having maximum exterior angle because it consists of least number of sides.

