Chapter 3: Understanding Quadrilaterals, Class 4



# **CLASS NOTES-ANSWERS**

### **EXERCISE 3.1**

1. Given here are some figures.



Classify each of them on the basis of the following.

- (a) Simple curve (b) Simple closed curve (c) F
- (d) Convex polygon (e) Concave polygon

+

(c) Polygon

\*

#### Answer:

(a) Simple curve - A simple curve is a curve that does not cross itself.



(b) Simple closed curve -In simple closed curves the shapes are closed by line-

segments or by a curved line



(c) A simple closed curve made up of only linesegments is called a polygon.



### Chapter 3: Understanding Quadrilaterals, Class 4



(d) A Convex polygon is defined as a polygon with no portions of their diagonals

in their exteriors. It has all its interior angles less than 180°.



(e) A concave polygon is defined as a polygon with one or more interior angles greater than 180°. It have portions of diagonals in the exterior.

Kaniirappa

2. How many diagonals does each of the following have?

1

- (a) A convex quadrilateral (b) A regular hexagon
- (c) Atriangle

Answer: Number of diagonals of a polygon =  $\frac{n(n-3)}{2}$ 

- (a) A convex quadrilateral has two diagonals.
- (b) Number of diagonals for a regular hexagon =  $\frac{n(n-3)}{2} = \frac{6(6-3)}{2} = \frac{6\times3}{2} = 9$
- (c) A triangle has no diagonal because there no two non-consecutive vertices.
- 3. What is the sum of the measures of the angles of a convex quadrilateral? Will this



#### Chapter 3: Understanding Quadrilaterals, Class 4

property hold if the quadrilateral is not convex? (Make a non-convex quadrilateral and try!)

Answer:



ABCD is a convex quadrilateral made of two triangles  $\triangle$ ABC and  $\triangle$ ADC.

The sum of the angles of a triangle is 180°. So:

$$\angle 6 + \angle 5 + \angle 4 = 180^\circ$$
 [sum of the angles of  $\triangle ABC = 180^\circ$ ]  
 $\angle 1 + \angle 2 + \angle 3 = 180^\circ$  [sum of the angles of  $\triangle ADC = 180^\circ$ ]  
 $\therefore \angle 6 + \angle 5 + \angle 4 + \angle 1 + \angle 2 + \angle 3 = 180^\circ + 180^\circ$   
 $= 360^\circ$ 

Hence, the sum of measures of the triangles of a convex quadrilateral is 360°. Yes, even if quadrilateral is not convex then, this property applies.



Let ABCD be a non-convex quadrilateral; join BD, which also divides the quadrilateral into two triangles.



Chapter 3: Understanding Quadrilaterals, Class 4

ABCD is a concave quadrilateral, made of two triangles  $\triangle ABD$  and  $\triangle BCD$ . Therefore, the sum of all the interior angles of this guadrilateral will also be,  $180^{\circ} + 180^{\circ} = 360^{\circ}$ 

4. Examine the table. (Each figure is divided into triangles and the sum of the anglesdeduced from that.)



What can you say about the angle sum of a convex polygon with number of

(d) n

(c) 10

sides?

(a) 7 (b) 8

Answer: Angle sum of a convex polygon of n sides is  $(n-2) \times 180^{\circ}$ .

(a) When n = 7

Kanjirappa Then Angle sum of a polygon =  $(7-2) \times 180^\circ = 5 \times 180^\circ = 900^\circ$ 

(b) When n = 8

Then Angle sum of a polygon =  $(8-2) \times 180^\circ = 6 \times 180^\circ = 1080^\circ$ 

(c) When n = 10

Then Angle sum of a polygon = =  $(10-2) \times 180^\circ = 8 \times 180^\circ = 1440^\circ$ 

(d) When n = n

Then Angle sum of a polygon = =  $(n-2) \times 180^{\circ}$ 

5. What is a regular polygon? State the name of a regular polygon of



### Chapter 3: Understanding Quadrilaterals, Class 4

(i) 3 sides (ii) 4 sides (iii) 6 sides

Answer:

Regular polygon - A polygon having all sides of equal length and the interior angles of equal measure is known as regular polygon i.e., a regular polygon is both 'equiangular' and 'equilateral'.

- (i) regular polygon of 3 sides = Equilateral triangle
- (ii) regular polygon of 4 sides = Square
- (iii) regular polygon of 6 sides = Regular hexagon
- 6. Find the angle measure x in the following figures.



Answer:

(a) 
$$50^{\circ} + 130^{\circ} + 120^{\circ} + x = 360^{\circ}$$

 $300^{\circ} + x = 360^{\circ}$ 

$$x = 360^{\circ} - 300^{\circ}$$

$$x = 60^{\circ}$$

(b) 
$$90^{\circ} + 60^{\circ} + 70^{\circ} + x = 360^{\circ}$$



Chapter 3: Understanding Quadrilaterals, Class 4

 $220^{\circ} + x = 360^{\circ}$  $220^{\circ} + x = 360^{\circ}$  $x = 360^{\circ} - 220^{\circ}$  $x = 140^{\circ}$ 

(c) Angle sum of a polygon =  $(n - 2) \times 180^{\circ}$ 

 $= (5-2) \times 180^{\circ}$  $= 3 \times 180^{\circ} = 540^{\circ}$ 

Sum of the interior angle of pentagon is 540°.

Angles at the bottom are linear pair. First base interior angle =  $180^{\circ} - 70^{\circ} = 110^{\circ}$ Second base interior angle =  $180^{\circ} - 60^{\circ} = 120^{\circ}$   $30^{\circ} + x + 110^{\circ} + 120^{\circ} + x = 540^{\circ}$   $2x + 260^{\circ} = 540^{\circ}$   $2x = 540^{\circ} - 260^{\circ}$  $2x = 280^{\circ}$ 

(d) Sum of the interior angle of pentagon is 540°.

 $x = 140^{\circ}$ 

Angle sum of a polygon  $= x + x + x + x + x = 540^{\circ}$ 

$$5x = 540^{\circ}$$

Here pentagon is a regular polygon. Hence each interior angle is 108°.



#### Chapter 3: Understanding Quadrilaterals, Class 4



y =120°

 $x + y + z = 90^{\circ} + 120^{\circ} + 150^{\circ} = 360^{\circ}$ 

(b) The sum of the measures of all the interior angles of a quadrilateral is 360°.

Let n is the fourth interior angle of the quadrilateral.

 $60^{\circ} + 80^{\circ} + 120^{\circ} + n = 360^{\circ}$ 

 $260^{\circ} + n = 360^{\circ}$ 



Chapter 3: Understanding Quadrilaterals, Class 4

 $n = 360^{\circ} - 260^{\circ}$ 

n = 100°

Sum of linear pair of angles is180°.

$$w + 100^{\circ} = 180^{\circ}$$
  
 $x + 120^{\circ} = 180^{\circ}$   
 $y + 80^{\circ} = 180^{\circ}$   
 $z + 60^{\circ} = 180^{\circ}$ 

On adding we get,

$$w+100^{\circ} + x + 120^{\circ} + y + 80^{\circ} + z + 60^{\circ} = 180^{\circ} + 180^{\circ} + 180^{\circ} + 180^{\circ}$$
$$w + x + y + z + 360^{\circ} = 720^{\circ}$$
$$w + x + y + z = 720^{\circ} - 360^{\circ}$$
$$w + x + y + z = 360^{\circ}$$
The sum of the measures of the external angles of any polygon is 360^{\circ}.