CLASS NOTES-ANSWERS

EXERCISE 2.4

1. Amina thinks of a number and subtracts $\frac{5}{2}$ from it. She multiplies the result by 8. The result now obtained is 3 times the same number she thought of. What is the number?

Answer:

Let the number be x .

$$
\begin{aligned}
& \left(x-\frac{5}{2}\right) 8=3 x \\
& 8 x-20=3 x
\end{aligned}
$$

Transposing $3 x$ to LHS and -20 to RHS, we obtain

$$
\begin{aligned}
& 8 x-3 x=20 \\
& 5 x=20
\end{aligned}
$$

Dividing both sides by 5 , we obtain

$$
x=4
$$

Hence, the number is 4.
2. A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are thenumbers?

Answer:

Let the numbers be x and $5 x$.

$$
\begin{aligned}
& 21+5 x=2(x+21) \\
& 21+5 x=2 x+42
\end{aligned}
$$

Chapter 2: Linear Equations in One Variable, Class 9

$$
\begin{aligned}
& 5 x-2 x=42-21 \\
& 3 x=21 \\
& x=7
\end{aligned}
$$

First number is 7
Second number is $5 x=5 \times 7=35$
Hence, the numbers are 7 and 35 respectively.
3. Sum of the digits of a two-digit number is 9 . When we interchange the digits, it isfound that the resulting new number is greater than the original number by 27 . Whatis the two-digit number?

Answer:

Let the digits at tens place and ones place be x and $9-x$
Therefore, original number $=10 x+(9-x)$
On interchanging the digits, the digits at ones place and tens place will be x and $9-x$ respectively.

Therefore, new number after interchanging the digits:

$$
\begin{aligned}
& =10(9-x)+x \\
& =90-10 x+x \\
& =90-9 x
\end{aligned}
$$

New number $=$ Original number +27

$$
\begin{aligned}
& 90-9 x=9 x+9+27 \\
& 90-9 x=9 x+36 \\
& 90-36=18 x \\
& 54=18 x
\end{aligned}
$$

Chapter 2: Linear Equations in One Variable, Class 9

$$
\begin{aligned}
& 3=x \\
& 9-x=6
\end{aligned}
$$

Hence, the digits at tens place and ones place of the number are 3 and 6 respectively.

Therefore, the two-digit number is $9 x+9=9 \times 3+9=36$
4. One of the two digits of a two digit number is three times the other digit. If you interchange the digits of this two-digit number and add the resulting number to the original number, you get 88 . What is the original number?

Answer:

Let the digits at tens place and ones place be x and $3 x$ respectively.
Therefore, original number $=10 x+3 x=13 x$
On interchanging the digits, the digits at ones place and tens place will be x and $3 x$ respectively.

Number after interchanging $=10 \times 3 x+x=30 x+x=31 x$
Original number + New number $=88$

$$
\begin{aligned}
& 13 x+31 x=88 \\
& 44 x=88 \\
& x=2
\end{aligned}
$$

Therefore, original number $=13 x=13 \times 2=26$
By considering the tens place and ones place as $3 x$ and x respectively, the two-digit number obtained is 62.

Therefore, the two-digit number may be 26 or 62.
5. Shobo's mother's present age is six times Shobo's present age. Shobo's age

Mathematics

Chapter 2: Linear Equations in One Variable, Class 9

five years from now will be one third of his mother's present age. What are their present ages?

Answer:

Let Shobo's age be x years. Therefore, his mother's age will be $6 x$ years.
After 5years, Shobo's age $=$ Shobo's mothers present age $\div 3$

$$
\begin{aligned}
& x+5=\frac{6 x}{3} \\
& x+5=2 x \\
& 2 x-x=5 \\
& x=5
\end{aligned}
$$

Shobo's age is 5
Shobo's mother's age is $6 x=6 \times 5=30$
Therefore, the present ages of Shobo's and Shobo's mother will be 5 years and 30 years respectively.
6. There is a narrow rectangular plot, reserved for a school, in Mahuli village. The length and breadth of the plot are in the ratio 11:4. At the rate ₹ 100 per metre it willcost the village panchayat ₹ 75000 to fence the plot. What are the dimensions ofthe plot?

Answer:

Let the common ratio between the length and breadth of the rectangular plot be x .

Hence, the length and breadth of the rectangular plot will be 11x m and $4 \mathrm{x} m$ respectively.

Perimeter of the plot $=2$ (Length + Breadth $)$

Chapter 2: Linear Equations in One Variable, Class 9

$$
\begin{aligned}
& =2 \times(11 x+4 x) \\
& =30 x m
\end{aligned}
$$

It is given that the cost of fencing the plot at the rate of Rs 100 per metre is Rs 75,000.

$$
\begin{aligned}
& 100 \times \text { Perimeter }=75000 \\
& 100 \times 30 x=75000 \\
& 30 x=750 \\
& x=25
\end{aligned}
$$

Length $=11 \mathrm{x}$
$=11 \times 25$
$=275 \mathrm{~m}$
Breadth $=4 x$
$=4 \times 25$
$=100 \mathrm{~m}$
Hence, the dimensions of the plot are 275 m and 100 m respectively.
7. Hasan buys two kinds of cloth materials for school uniforms, shirt material thatcosts him ₹ 50 per metre and trouser material that costs him ₹ 90 per metre. For every 3 meters of the shirt material he buys 2 metres of the trouser material. He sells the materials at 12% and 10% profit respectively. His total sale is ₹ 36,600 . How much trouser material did he buy?

Answer:

Let 2 xm of trouser material and 3 xm of shirt material be bought by him.
Cost of shirt material $=3 x \times 50=150 x$

Chapter 2: Linear Equations in One Variable, Class 9
Cost of trouser material $=2 x \times 90=180 x$
Selling price of shirt material $=150 x+\left(150 \times \frac{12}{100}\right)$

$$
\begin{aligned}
& =150 x+18 x \\
& =168 x
\end{aligned}
$$

Selling price of trouser material $=180 x+\left(180 \times \frac{10}{100}\right)$

$$
\begin{aligned}
& =180 x+18 x \\
& =198 x
\end{aligned}
$$

Total amount of selling = Rs 36600

$$
\begin{aligned}
& 168 x+198 x=36600 \\
& 366 x=36660 \\
& x=100
\end{aligned}
$$

Trouser material $=2 x$

$$
\begin{aligned}
& =2 \times 100 \\
& =200 \mathrm{~m}
\end{aligned}
$$

8. Half of a herd of deer are grazing in the field and three fourths of the remaining are playing nearby. The rest 9 are drinking water from the pond. Find the number ofdeer in the herd.

Answer:

Let the number of deer be x.
Number of deer grazing in the field $=\frac{x}{2}$
Number of deer playing nearby $=\frac{3}{4} \times$ Number of remaining deer

$$
=\frac{3}{4} \times\left(X-\frac{x}{2}\right)
$$

Chapter 2: Linear Equations in One Variable, Class 9

$$
\begin{aligned}
& =\frac{3}{4} \times \frac{x}{2} \\
& =\frac{3 x}{8}
\end{aligned}
$$

Number of deer drinking water from the pond $=9$

$$
\begin{aligned}
& \frac{x}{2}+\frac{3 x}{8}+9=x \\
& x-\left(\frac{x}{2}+\frac{3 x}{8}\right)=9 \\
& x-\frac{4 x+3 x}{8}=9 \\
& 8 x-7 x=72 \\
& x=72
\end{aligned}
$$

Hence, the total number of deer in the herd is 72 .
9. A grandfather is ten times older than his granddaughter. He is also 54 years older than her. Find their present ages.

Answer:

Let the granddaughter's age be x years. Therefore, grandfather's age will be 10x years.

Grandfather's age $=$ Granddaughter's age +54 years

$$
\begin{aligned}
& 10 x=x+54 \\
& 10 x-x=54 \\
& 9 x=54 \\
& x=6
\end{aligned}
$$

Granddaughter's age $=x$ years $=6$ years
Grandfather's age $=10 \times$ years

$$
\begin{aligned}
& =(10 \times 6) \text { years } \\
& =60 \text { years }
\end{aligned}
$$

Mathematics

Chapter 2: Linear Equations in One Variable, Class 9
10. Aman's age is three times his son's age. Ten years ago he was five times his son'sage. Find their present ages.

Answer:

Let Aman's son's age be x years.
Therefore, Aman's age will be $3 x$ years.
Ten years ago, their age was $(x-10)$ years and $(3 x-10)$ years respectively.

10 years ago, Aman's age $=5 \times$ Aman's son's age 10 years ago

$$
\begin{aligned}
& 3 x-10=5(x-10) \\
& 3 x-10=5 x-50 \\
& 50-10=5 x \\
& 40=2 x \\
& 20=x
\end{aligned}
$$

Aman's son's age $=20$ years
Aman's age $=3 x$ years

$$
\begin{aligned}
& =(3 \times 20) \text { years } \\
& =60 \text { years }
\end{aligned}
$$

