Chapter 5: Lines and Angles, Class 5

CLASS NOTES-ANSWERS

EXERCISE 5.2

1. State the property that is used in each of the followingstatements?

$$
\begin{aligned}
& \text { i.If } a|\mid b \text {, then } \angle 1=\angle 5 \text {. } \\
& \text { ii.If } \angle 4=\angle 6 \text {, then } a|\mid b \text {. } \\
& \text { iii.If } \angle 4+\angle 5=180^{\circ} \text {, then } a|\mid b \text {. }
\end{aligned}
$$

Answer:

(i) If two parallel lines are intersected by a transversal, then each pair of correspondingangles are equab.
(ii) When a transversal intersects two parallel lines such that if pair of alternate interiorangles are equal then the lines are parallel.
(iii) When a transversal intersects two parallel line such that pair of interior angles on the same side of transversal are supplementary, then the lines are parallel.
2. In the adjoining figure, identify
i. the pairs of corresponding angles.
ii. the pairs of alternate interior angles.
iii. the pairs of interior angles on the sameside of the transversal.

iv. the vertically opposite angles.

Chapter 5: Lines and Angles, Class 5

Answer:

(i) $\angle 1$ and $\angle 5 ; \angle 2$ and $\angle 6 ; \angle 4$ and $\angle 8 ; \angle 3$ and $\angle 7$
(ii) $\angle 3$ and $\angle 5$ and $\angle 2$ and $\angle 8$
(iii) $\angle 3$ and $\angle 8$ and $\angle 2$ and $\angle 5$
(iv) $\angle 1$ and $\angle 3 ; \angle 2$ and $\angle 4 ; \angle 6$ and $\angle 8 ; \angle 5$ and $\angle 7$
3. In the adjoining figure, $p \| q$. Find the unknown

Answer:
Given p || q and it is intersected by a transversal.

$$
\angle d=125^{\circ}
$$

(Corresponding angle)
Since, $125^{\circ}+\angle e=180^{\circ} \quad$ (Linear pair)

$\angle e=180^{\circ}-125^{\circ}$
$\angle e=55^{\circ}$
$\angle e=\angle f=55^{\circ}$
$\angle e=\angle \mathrm{a}=55^{\circ}$
$\angle a+\angle b=180^{\circ} \quad$ (Linear pair)
$55^{\circ}+\angle b=180^{\circ}$
$\angle b=180^{\circ}-55^{\circ}$
$\angle b=125^{\circ}$
Also, $\angle b=\angle d=125^{\circ} \quad$ (Vertically opposite angles)
$\angle a=\angle c=55^{\circ} \quad$ (Vertically opposite angles)
Thus, $\angle a=55^{\circ}$
$\angle b=125^{\circ}$
$\angle c=55^{\circ}$
$\angle d=125^{\circ} ;$

Mathematics

Chapter 5: Lines and Angles, Class 5

$$
\begin{aligned}
& \angle e=55^{\circ} \\
& \angle f=55^{\circ}
\end{aligned}
$$

4. Find the value of x in each of the following figures if $/ \| m$.

Answer:
(i) Given I || m and t is transversal,

$$
\begin{aligned}
& \angle y=110^{\circ} \quad \text { (Corresponding angle) } \\
& \angle x+\angle y=180^{\circ} \text { (Linear pair) } \\
& \angle x=180^{\circ}-110^{\circ} \\
& \angle x=70^{\circ}
\end{aligned}
$$

(ii) Given I \| m and a || b,

$$
\angle x=100^{\circ} \quad \text { (corresponding angle) }
$$

5. In the given figure, the arms of two angles are parallel. If $\angle A B C=70^{\circ}$, then find
(i) $\angle \mathrm{DGC}$
(ii) $\angle \mathrm{DEF}$

Answer:
(i) Given $A B|\mid D G$ and $B C$ is transversal

Also, $\angle A B C=70^{\circ} \quad$ (Given)

Chapter 5: Lines and Angles, Class 5
Since, $\angle A B C=\angle D G C$ (Corresponding angles)
Therefore, $\angle D G C=70^{\circ}$
(ii) Given $B C|\mid E F$ and $D E$ is transversal

Also, $\angle D G C=70^{\circ} \quad$ (from (i))
Since, $<D G C=<D E F$ (Corresponding angles)
Therefore, $\angle D E F=70^{\circ}$
6. In the given figures below, decide whether / is parallel to m.

(i)

(iii)

Answer:

(i) $126^{\circ}+44^{\circ}=170^{\circ}$

As the sum of interior angles on the same side of transversal n is not 180°. Therefore, $/$ is not parallel to m.
(ii) $\angle x+75^{\circ}=180^{\circ} \quad$ (Linear pair)
$\angle x=180^{\circ}-75^{\circ}$
$\angle x=105^{\circ}$
The measure of $\angle x$ is 105° and its corresponding angle is 75°.
Therefore, the lines I and m are not parallel
(iii) $\angle y=57^{\circ}$
(Vertically opposite angles)

$$
\begin{aligned}
& \angle x+123^{\circ}=180^{\circ} \\
& \angle x=180^{\circ}-123^{\circ} \\
& \angle x=57^{\circ}
\end{aligned}
$$

Chapter 5: Lines and Angles, Class 5
Here, the measures of corresponding angles are equal i.e., 57°.
Therefore, lines I and m are parallel to each other.
(iv) $\angle x+98^{\circ}=180^{\circ} \quad$ (Linear pair)
$\angle x=180^{\circ}-98^{\circ}$
$\angle x=82^{\circ}$
The measures of corresponding angles are 82° and 72° which are not equal.

Therefore, I and m are not parallel to each other.

