Chapter 5: Lines and Angles, Class 3

CLASS NOTES-ANSWERS

EXERCISE 5.1

1. Find the complement of each of the following angles:

(i) Given angle = 105°

Supplement angle of $105^\circ = 180^\circ - 105^\circ = 75^\circ$

(*ii*) Given angle = 87°

Supplement angle of $87^\circ = 180^\circ - 87^\circ = 93$

Chapter 5: Lines and Angles, Class 3

(*iii*) Given angle = 154°

Supplement angle of $154^\circ = 180^\circ - 154^\circ = 26^\circ$

3. Identify which of the following pairs of angles are complementary

and which are supplementary.

(v) 45°, 45° (vi) 80°, 10°

Answer:

(i) 65° + 115° = 180°

Therefore, these two angles are supplementary.

(ii) 63° + 27° = 90°

Therefore, these two angles are complementary.

```
(iii) 112° + 68° = 180°
```

Therefore, these two angles are supplementary

```
(iv) 130° + 50° = 180°
```

Therefore, these two angles are supplementary

(v) 45° + 45° = 90°

Therefore, these two angles are complementary

(vi) 80° + 10° = 90°

Therefore, these two angles are complementary.

4. Find the angle which is equal to its complement.

Answer: Let the angle be *x*.

Therefore, complement of this angle will also be *x*.

The sum of measure of pair of complementary angles is 90°.

Chapter 5: Lines and Angles, Class 3

$$x + x = 90^{\circ}$$
$$2x = 90^{\circ}$$
$$x = \frac{90}{2}$$
$$x = 45^{\circ}$$

Thus, the angle which is equal to its complement is 45°.

5. Find the angle which is equal to its supplement.

Answer: Let the angle be *x*.

Therefore, supplement of this angle will also be *x*.

The sum of measure of pair of supplementary angles is 180°.

$$x + x = 180^{\circ}$$

$$2x = 180^{\circ}$$

$$x = \frac{180}{2}$$

$$x = 90^{\circ}$$

Thus, the angle which is equal to its supplement is 90°.

6. In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles.

If \angle 1 is decreased, what changes should take place in \angle 2 so that both the angles still remain supplementary.

- Answer: If \angle 1 is decreased by some degrees, then \angle 2 will also be increased with the same degree, so both the angles will remain supplementary.
- 7. Can two angles be supplementary if both of them are:

Chapter 5: Lines and Angles, Class 3

(i) acute?	(ii) obtuse?	(iii) right?
	(1) 0000000	

Answer:

- (i) No, sum of acute angles is less than 180°.
- (ii) No, sum of obtuse angles is greater than 180°.
- (iii) Yes, sum of two right angles is 180°.
- 8. An angle is greater than 45°. Is its complementary angle greater than 45° or

equal to 45° or less than 45°?

Answer:

Let there be two angles \angle 1 and \angle 2 .

Therefore $\angle 1 > 45^{\circ}$ (given)

Adding $\angle 2$ to both sides ,we get DEN

 $\angle 1 + \angle 2 > 45^\circ + \angle 2$ $90^\circ > 45^\circ + \angle 2$ $90^\circ - 45^\circ > \angle 2$

45° > ∠2

Therefore, its complementary angle will be less than 45°.

9. In the adjoining figure:

- (i) Is \angle 1 adjacent to \angle 2?
- (ii) Is \angle AOC adjacent to \angle AOE?
- (iii) $Do \angle COE$ and $\angle EOD$ form a linear pair?
- (iv) Are \angle BOD and \angle DOA supplementary?
- (v) Is \angle 1 vertically opposite to \angle 4?
- (vi) What is the vertically opposite angle of \angle 5?

Answer:

www.gardenschool.in

Chapter 5: Lines and Angles, Class 3

- (i) Yes, because they have common vertex *o* and common arm OC.
- (ii) No, they have non-common arms on either side of common arms.
- (iii) Yes, they form linear pair.
- (iv) Yes, they are supplementary.
- (v) Yes, they are vertical angles because they are formed due to intersection of straight lines.
- (vi) Vertically opposite angle of \angle 5 is \angle 2 + \angle 3 i.e. \angle COB.
- 10. Indicate which pairs of angles are:

Answer:

- (i) \angle 1 and \angle 4, \angle 5 and \angle 2 + \angle 3 are vertically opposite angles as they formed due to intersection of two straight lines.
- (ii) \angle 1 and \angle 5 , \angle 5 and \angle 4 forms linear pair
- 11. In the following figure, is 1 adjacent to 2? Give reasons.

Answer: $\angle 1$ is not adjacent to $\angle 2$ because their vertex is not common.

Chapter 5: Lines and Angles, Class 3

12. Find the values of the angles *x*, *y*, and *z* in each of the following:

Answer:

(i) ∠*x* = 55° (Vertically opposite angle) ∠*x* + ∠y = 180° (Linear pair) 55 °+∠y = 180° ∠y = 180°- 55 ° ∠y = 125 ° Therefore, $\angle y = \angle z = 125^{\circ \text{ROE}}$ (Vertically opposite angle) Hence, $\angle x = 55^\circ$, $\angle y = 125^\circ$, $\angle z = 125^\circ$ (ii) By using angle sum property, $40^{\circ} + x + 25^{\circ} = 180^{\circ}$ (Angles on straight line) $x + 65^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 65^{\circ} = 115^{\circ}$ Also, $40^{\circ} + y = 180^{\circ}$ (Linear pair) $y = 180^{\circ} - 40^{\circ}$ $y = 140^{\circ}$ $y + z = 180^{\circ}$ (Linear pair) $140^{\circ} + z = 180^{\circ}$ ($y = 140^{\circ}$) $z = 180^{\circ} - 140^{\circ}$ $z = 40^{\circ}$

Chapter 5: Lines and Angles, Class 3

Thus, $x = 115^{\circ}$, $y = 140^{\circ}$ and $z = 40^{\circ}$

- 13. Fill in the blanks:
 - (i) If two angles are complementary, then the sum of their measures is
 - (ii) If two angles are supplementary, then the sum of their measures is
 - (iii) Two angles forming a linear pair are_____.
 - (iv) If two adjacent angles are supplementary, they form a_____.
 - (v) If two lines intersect at a point, then the vertically opposite angles are always
 - (vi) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are _____.

Answer:

(i) 90°
(ii) Supplementary
(v) Equal
(v) Obtuse Angle
(v) Obtuse vertically opposite angles
(i) Adjacent complementary angles
(ii) Equal supplementary angles
(iv) Unequal supplementary angles
(v) Adjacent angles that do not form a linear pair

Chapter 5: Lines and Angles, Class 3

Answer:

- (i) $\angle AOD = \angle BOC$
- (ii) \angle EOA and \angle AOB are adjacent complementary angles.
- (iii) \angle EOB and \angle EOD
- (iv) \angle EOA and \angle EOC.
- (v) \angle AOB and \angle AOE; \angle AOE and \angle EOD; \angle EOD and \angle COD

