TP: Chapter 1: Number System, Class 8

CLASS NOTES-ANSWERS

Assess Yourself

4) Think and answer.
a) What is an octal number system?

Answer: A number system made up of eight digits from 0 to 7, is known as the octal number system. In octal number system, every number is formed using the digits $0,1,2,3,4,5,6$ and 7 . The base of the octal number system is 8 . It is also known as the base- 8 system. Each positioning number represents the power of base 8.
b) What do you understand by the number system? Give an example. Answer: A number system is a way to express quantities used for counting, comparing amounts, performing calculations and representing values.
c) What do you mean by base in a number system?

Answer: The total number of digits used in a number system is called its base or radix.
d) How do you represent data on a computer?

Answer: The smallest piece of data that can be recognised and used by the computer is known as the bit or binary digit. A bit is a single binary value i.e., 1 or 0 . A computer is an electronic device which has two states: On and Off. These two states of the computer are represented by two digits: 1 and 0.1 represents the electronic state ON, and 0 represents the electronic state OFF.

Computer Science

TP: Chapter 1: Number System, Class 8
e) How can we convert a binary number into a decimal number? Give an example.

Answer: To convert a binary number into a decimal number, follow the given steps:

1. Multiply each digit of the binary number by 2 to the power of n, where n is the position of the digit starting from 0 on the right.
2. Add the result.

Example:
Convert (101001) $)_{2}$ to decimal number.
$=\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)$
Sum of the products $=32+0+8+0+0+1=(41)_{10}$
Hence, $(101001)_{2}=(41)_{10}$
f) Write the rules to subtract two binary numbers

Answer:

\mathbf{X}	\mathbf{Y}	$\mathbf{X}-\mathbf{Y}$
0	0	$0-0=0$
0	1	$0-1=1$
		(borrow 1, so that $10-1=1$)
1	0	$1-0=1$
1	1	$1-1=0$

5) Solve the following:
a) Convert these into the given number system and write their results.

TP: Chapter 1: Number System, Class 8
i) $(101)_{2}$ to decimal number system 5
ii) $(250)_{10}$ to binary number system - $(11111010)_{2}$
iii) 101011_{2} to decimal number system - (43) $)_{10}$
iv) 10111011_{2} to Decimal number system - (187) $)_{10}$
b) Perform the following operations on binary numbers.
i) Subtract $(1101)_{2}$ from $(100110)_{2}$
(011001) ${ }_{2}$
ii) Add $(1000)_{2}$ and $(101)_{2}$
$(01101)_{2}$

6) Competency-based/Application-based questions:

a) Kartik noticed the following numbers while working. (256) 8 and (2AF) ${ }_{16}$. Which number system do they belong to? How can he tell? Answer: (256) ${ }_{8} \rightarrow$ This number belongs to octal number system. $(2 A F)_{16} \rightarrow$ This number belongs to hexadecimal number system. He can tell by observing the base of the number system
b) A number system has made the representation of large values easy. It is made up of 16 symbols, 0 to 9 and A to F. Which number system we are talking about?

Answer: We are talking about hexadecimal number system.

\{Coding zone\}

1) Write the largest and smallest six-digit numbers having four different digits.

Answer: 99876 and 100023
2) If 35 \# $5=7$ and 49 \# $7=7$, then 125 \# $5=$?

Answer: 25

