Chapter 3: Playing with Numbers, Class 14

CLASS NOTES-ANSWERS

EXERCISE 3.6

1. Find the HCF of the following numbers:

(a) 18,48	(b) 30,42	(c) 18,60	(d) 27,63
(e) 36,84	(f) 34,102	(g) $70,105,175$	
(h) $91,112,49$	(i) $18,54,81$	(j) $12,45,75$	

Answer:

(a) 18, 48

The prime factorizations of 18 and 48 are as follows:
$18=2 \times 3 \times 3$
$48=2 \times 2 \times 2 \times 2 \times 3$
The common factors are 2 and 3.
HCF $=2 \times 3=6$
Hence, the HCF of 18,48 is 6
(b) 30,42

The prime factorizations of 30 and 42 are as follows:
$30=2 \times 3 \times 5$
$42=2 \times 3 \times 7$
The common factors are 2 and 3.
HCF $=2 \times 3=6$
Hence, the HCF of 30,42 is 6 .
(c) 18,60

The prime factorizations of 18 and 60 are as follows:
$18=2 \times 3 \times 3$
$60=2 \times 2 \times 3 \times 5$
The common factors are 2 and 3.
HCF $=2 \times 3=6$
Hence, the HCF of 18,60 is 6 .
(d) 27,63

The prime factorizations of 27 and 63 are as follows:
$27=3 \times 3 \times 3$
$63=3 \times 3 \times 7$

The common factors are 3 and 3.
HCF $=3 \times 3=9$
Hence, the HCF of 27,63 is 9
(e) 36,84

The prime factorizations of 36 and 84 are as follows:
$36=2 \times 2 \times 3 \times 3$
$84=2 \times 2 \times 3 \times 7$
The common factors are 2, 2, and 3.
$\mathrm{HCF}=2 \times 2 \times 3=12$
Hence, the HCF of 36,84 is 12
(f) 34,102

Chapter 3: Playing with Numbers, Class 14
The prime factorizations of 34 and 102 are as follows:
$34=2 \times 17$
$102=2 \times 3 \times 17$

The common factors are 2 and 17.
$\mathrm{HCF}=2 \times 17=34$
Hence, the HCF of 34,102 is 34
(g) $70,105,175$

The prime factorizations of 70,105 , and 175 are as follows:
$70=2 \times 5 \times 7$
$105=3 \times 5 \times 7$
$175=5 \times 5 \times 7$
The common factors are 5 and 7 .
HCF $=5 \times 7=35$
Hence, the HCF of $70,105,175$ is 35
(h) $91,112,49$

The prime factorizations of 91,112 , and 49 are as follows:
$91=7 \times 13$
$112=2 \times 2 \times 2 \times 2 \times 7$
$49=7 \times 7$

The common factors are 7.

HCF = 7
Hence, the HCF of $91,112,49$ is 7
(i) $18,54,81$

The prime factorizations of 18,54 , and 81 are as follows:
$18=2 \times 3 \times 3$
$54=2 \times 3 \times 3 \times 3$
$81=3 \times 3 \times 3 \times 3$

The common factors are 3 and 3 .

HCF $=3 \times 3=9$
Hence, the HCF of $18,54,81$ is 9
(j) $12,45,75$

The prime factorizations of 12,45 and 75 are as follows:
$12=2 \times 2 \times 3$
$45=3 \times 3 \times 5$
$75=3 \times 5 \times 5$

The common factors are 3.

HCF $=3$
Hence, the HCF of $12,45,75$ is 3 .
2. What is the HCF of two consecutive:
(a) numbers?
(b) even numbers?
(c) odd numbers?

Chapter 3: Playing with Numbers, Class 14
Answer:
(a) When calculating the HCF of two consecutive numbers, the common factor is 1 .

Example: Consecutive numbers $=4,5$
Factors of $4=1,2,4$
Factors of $5=1,5$
The HCF of 4 and 5 is 1
Hence, HCF of any two consecutive numbers is equal to 1 .
(b) When calculating the HCF of two consecutive even numbers, the common factor is 2 .

Example: Consecutive even numbers $=2,4$
Factors of $2=1,2$
Factors of $4=1,2,4$
The HCF of 2 and 4 is 2
Hence, HCF of two consecutive even numbers is equal to 2 .
(c) When calculating the HCF of two consecutive odd numbers, the common factor is 1 .

Example: Consecutive odd numbers $=3,5$
Factors of $3=1,3$
Factors of $5=1,5$
The HCF of 3 and 5 is 1 .
Hence, the HCF of two consecutive odd numbers is equal to 1 .

Chapter 3: Playing with Numbers, Class 14
3. HCF of co-prime numbers 4 and 15 was found as follows by factorisation:
$4=2 \times 2$ and $15=3 \times 5$ since there is no common prime factor, so HCF of 4 and 15 is 0 . Is the answer correct? If not, what is the correct HCF?

Answer:

$4=2 \times 2$ and $15=3 \times 15$.
Since there are no common prime factors, so HCF of 4 and 15 is 0 is incorrect.

There are no prime numbers or prime factors common to 4 and 15. Therefore their HCF is the universal factor 1.

Hence, 4 and 15 are co-prime numbers having HCF as 1 and not 0 .

