Chapter 3: Playing with Numbers, Class 12

CLASS NOTES-ANSWERS

EXERCISE 3.5

1. Which of the following statements are true?
(a) If a number is divisible by 3 , it must be divisible by 9 .
(b) If a number is divisible by 9 , it must be divisible by 3 .
(c) A number is divisible by 18 , if it is divisible by both 3 and 6 .
(d) If a number is divisible by 9 and 10 both, then it must be divisible by 90 .
(e) If two numbers are co-primes, at least one of them must be prime.
(f) All numbers which are divisible by 4 must also be divisible by 8 .
(g) All numbers which are divisible by 8 must also be divisible by 4 .
(h) If a number exactly divides two numbers separately, it must exactly divide their sum.
(i) If a number exactly divides the sum of two numbers, it must exactly divide the two numbers separately.

Answer:
(a) False
(b) True
(c) False
(d) True
(e) False
(f) False
(g) True
(h) True
(i) False
2. Here are two different factor trees for 60 . Write the missing numbers.

Mathematics

Chapter 3: Playing with Numbers, Class 12
(a)
(b)

Answer:
a.
b.

3. Which factors are not included in the prime factorisation of a composite number?

Answer:

Example: $42=2 \times 3 \times 7$
The prime factors of 42 are 2,3 , and 7 . The factors that are not included are 1 and 42 as they are not prime numbers.

Hence, we can say that the number itself and 1 are not included inthe prime factorization of a composite number.
4. Write the greatest 4-digit number and express it in terms of its prime factors.

Answer:

The greatest 4-digit number is 9999.

$$
9999=3 \times 3 \times 11 \times 101
$$

Mathematics

Chapter 3: Playing with Numbers, Class 12
Thus, the prime factors of the greatest 4-digit number 9999 are 3, 3, 11, 101.
5. Write the smallest 5-digit number and express it in the form of its prime factors.

Answer:

The smallest 5-digit number is 10000
Thus, the required prime factors of 10000 are $2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$.
6. Find all the prime factors of 1729 and arrange them in ascending order. Now state the relation, if any; between two consecutive prime factors.

Answer:

All the prime factors of 1729 are $7 \times 13 \times 19$
The difference between two consecutive prime factors is 6 .
Since, $13-7=6$ and $19-13=6$
7. The product of three consecutive numbers is always divisible by 6 . Verify this statement with the help of some examples.

Answer:

Example 1:

Let's take three consecutive numbers 19, 20, and 21.

The product of $19 \times 20 \times 21=7980$
Now divide 7980 by 6.
$7980 \div 6=1330$

Mathematics

Chapter 3: Playing with Numbers, Class 12
Therefore, the product of three consecutive numbers, 19,20 , and 21 , is divisible by 6 .

Example 2:

Let's take three consecutive numbers 11, 12, and 13.

The product of $11 \times 12 \times 13=1716$
Now divide 1716 by 6.
$1716 \div 6=286$
Therefore, the product of three consecutive numbers, 11,12 , and 13 , is divisible by 6 .
8. The sum of two consecutive odd numbers is divisible by 4 . Verify this statement with the help of some examples.

Answer:

Example 1:

The sum of two consecutive odd numbers is divisible by 4.
Suppose we have two consecutive odd numbers, 23 and 25.The sum of two consecutive odd numbers $=23+25=48$

The number formed by two consecutive odd numbers, 23 and 25 , is 48 , divisible by 4.

Example 2:

Let us take another two consecutive odd numbers, 79 and 81.The sum of two consecutive odd numbers $=79+81=160$

Chapter 3: Playing with Numbers, Class 12
The number formed by two consecutive odd numbers, 79 and 81 , is 160, divisible by 4.
9. In which of the following expressions, prime factorisation has been done?
(a) $24=2 \times 3 \times 4$
(b) $56=7 \times 2 \times 2 \times 2$
(c) $70=2 \times 5 \times 7$
(d) $54=2 \times 3 \times 9$

Answer:

(a) $24=2 \times 3 \times 4-$ Not correct
(b) $56=7 \times 2 \times 2 \times 2$ - Correct
(c) $70=2 \times 5 \times 7$ - Correct
(d) $54=2 \times 3 \times 9-$ Not correct
10. Determine if 25110 is divisible by 45 .
[Hint: 5 and 9 are co-prime numbers. Test the divisibility of the number by 5 and 9].

Answer:

$45=5 \times 9$

Here, 5 and 9 are co-prime numbers.
Here we have 25110, the unit's digit is 0 . So, it is divisible by 5 .
For 25110 , the sum of the digits is $2+5+1+1+0=9$ which is divisible by 9 .

So, the number 25110 is divisible by 5 and 9 both. Hence, it will also be divisible by their product 45 .

Hence, the number 25110 is divisible by 45.

Grade 6
Chapter 3: Playing with Numbers, Class 12
11. 18 is divisible by both 2 and 3 . It is also divisible by $2 \times 3=6$. Similarly, a number is divisible by both 4 and 6 . Can we say that the number must also be divisible by $4 \times 6=24$? If not, give an example to justify your answer Answer:

If a number is divisible by two co-prime numbers, it is also divisible by theirproduct.

The numbers 2 and 3 are co-prime numbers. Hence, if a number is divisibleby 2 and 3, it should also be divisible by their product i.e., 6 .

But now, the numbers 4 and 6 are not co-prime numbers as their HCF is notequal to 1 . Thus, if a number is divisible by both 4 and 6 it necessarily doesnot have to be divisible by their product $4 \times 6=24$.

Example: 36 and 48 are divisible by both 4 and 6 but not by 24 .
12. I am the smallest number, having four different prime factors. Can you find me?

Answer:

Since it is the smallest number having four different prime factors, thus, it will be the product of the first 4 prime numbers: $2,3,5$, and 7 .

Hence, the required smallest number $=2 \times 3 \times 5 \times 7=210$

